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Expanding the space of protein geometries
by computational design of de novo fold families
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Naturally occurring proteins vary the precise geometries of structural elements to create distinct shapes
optimal for function. We present a computational design method, loop-helix-loop unit combinatorial
sampling (LUCS), that mimics nature’s ability to create families of proteins with the same overall fold
but precisely tunable geometries. Through near-exhaustive sampling of loop-helix-loop elements, LUCS
generates highly diverse geometries encompassing those found in nature but also surpassing known
structure space. Biophysical characterization showed that 17 (38%) of 45 tested LUCS designs
encompassing two different structural topologies were well folded, including 16 with designed non-native
geometries. Four experimentally solved structures closely matched the designs. LUCS greatly expands
the designable structure space and offers a new paradigm for designing proteins with tunable
geometries that may be customizable for novel functions.

T
he design of proteins with new and use-
ful architectures and functions requires
precise control overmolecular geometries
(1, 2). In nature, proteins adopt a limited
set of protein fold topologies (3–5) that

are reused and adapted for different functions.
Here we define “topology” as the identity and
connectivity of secondary structure elements
(Fig. 1A). Within a given topology, geometric
features including length and orientations of
secondary structure elements are often highly
variable (3, 4). These considerable geometric
differences between proteins with the same
topology are necessary, as they define the ex-
quisite shape and physicochemical comple-
mentarity characteristic of protein functional
sites. Creating proteins with new functions de
novo therefore requires the ability to design
proteinswith not only different topologies, but
also distinct custom-shaped geometrieswithin
these topologies optimal for each function
(Fig. 1A).
Computational design has been successful

in mimicking the ability of evolution to gener-
ate diverse protein structures spanning a-helical
(6–10), a-b (11–13), and b-sheet (14, 15) fold
topologies, including novel folds (16). How-
ever, most design methods do not include ex-
plicit mechanisms to vary geometric features
within a topology. For instance, successful
design methods assemble protein structures
from peptide fragments using a definition of
the desired fold and topological rules derived

from naturally occurring structures (12). Subse-
quent iterative cycles of fixed-backbone sequence
optimization and fixed-sequence structure min-
imization (16) refine atomic packing inter-
actions but do not create substantial changes
in geometry. An exception are methods that
use parametric equations to sample backbone
variation (17) or take advantage ofmodular pro-
tein elements, but these methods are restricted
to helical bundles (6,8, 10) or repeat protein (18)
architectures, respectively.
Here, we sought to develop a generalizable

computational design approach thatmimics the
ability of evolution to create geometric variation
within a given fold topology (Fig. 1). When an-
alyzing geometric variation in protein fold fam-
ilies, we found that 84% of naturally occurring
fold families contain variations in loop-helix-
loop (LHL) elements (fig. S1).Wehence reasoned
that amethod that systematically samples geom-
etric variation in these units would be able
to recapitulate a large fraction of geometric
diversity in naturally occurring structureswhile
also creating fold families of de novo designed
proteins with tunable geometries (Fig. 1B).
To develop a generalizable method that

systematically samples geometries of LHL ele-
ments, we first examined the individual con-
necting loop elements in native LHL units. For
all LHL elements from all CATH superfamilies
(3) of nonredundant structures, 72.8% of the
loops contained five or fewer residues (fig. S2A).
We extracted 313,072 loops of length 2 to 5
connecting to helices from the Rosetta non-
redundant fragment database (19) and sorted
loops into 12 libraries according to loop length
and type of adjacent secondary structure (table
S1). For each library, only nonredundant loops
were retained (20); this procedure yielded be-
tween 224 and 5826 loops per library. The
loop libraries had degeneracies (total number
of loops divided by number of nonredundant
loops in each library) ranging from 4.4 to 202

(fig. S2B), indicating that evolution frequently
uses similar loop structures in different pro-
teins. This observation suggests that the iden-
tified loop element libraries could also be used
to computationally sample novel protein struc-
tures that have not been explored by nature.
We developed a protocol called loop-helix-

loop unit combinatorial sampling (LUCS; Fig.
1C and fig. S3). LUCS starts with an input
protein fold, which can be naturally occurring
or (as in our case) de novo designed (20), and
a definition of gaps in which to insert LHL
units. The first step systematically samples all
individual loop elements from our libraries
(table S1). For each gap, loops are inserted at
each end of the gap and any loops that clash
with the input structure are removed. In a
second step, all pairs of remaining loops are
tested for supporting LHL units by growing
helices from each loop. If helices grown from
the two ends meet in the middle, excess res-
idues are removed in the third step and the
gap is closed by energy minimization with a
chain-break penalty and hydrogen bond re-
straints. Closed LHL units with distorted hy-
drogen bond geometries, steric clashes, or
suboptimal interactions between designed
backbones and the environment are discarded
(20). In a fourth step, combinations of LHL
units at different positions can be screened to
yield final structures that have multiple com-
patible LHL units with systematically sampled
lengths and orientations.
To validate the ability of LUCS to generate

distinct geometries within given fold topol-
ogies, we applied the method to three design
problems (Fig. 1D). In the first two design prob-
lems, we varied one (RO1) or two (RO2) LHL
units of a de novo designed protein (12) (PDB
ID 2LV8) with a Rossmann fold topology. In
the third problem, we varied two LHL units of
a de novo designed protein (21) (PDB ID 5TPJ)
with a nuclear transport factor 2 (NTF2) fold
topology (NT). In principle, LUCS can sample
topologies with an arbitrary number of LHL
units. For the systems we tested, systematic ge-
ometry sampling generated ~104 LHL elements
for each gap. To limit the required computing
power,we screened 106 randomcombinations of
LHL units and generated 104 to 105 final back-
bone structures for each design problem (table
S2). We then applied the Rosetta FastDesign
protocol (20) to optimize sequences for all res-
idue positions within 10 Å from the new LHL
elements. The number of designed residues
for each backbone was between 33 and 87.
We note that Rosetta FastDesign also intro-
duces structural changes outside the reshaped
LHL elements of the designed fold through
gradient-based torsion minimization, although
these changes are small [backbone heavy-atom
rootmean squaredeviation (RMSD)< 1Å]. After
sequence design, we filtered the design models
computationally using a set of quality criteria
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that included a minimal number of buried
unsatisfied hydrogen bond donors and accep-
tors, tight atomic packing interactions in the
protein core, and compatibility between se-
quences and local structures (20).
For each of the three design problems, we

selected 50 low Rosetta energy (22) designs
from models that passed the quality filters

and had diverse conformations for further
computational characterization. The Rosetta
FastDesign simulations optimized low-energy
sequences given a desired structure. To de-
termine the converse—whether the desired
structure is also a low-energy conformation,
given the sequence—we conducted ab initio
protein structure prediction simulations in

Rosetta (23). For the Rossmann fold designs, we
required the lowest-energy predicted structure
to be within 1 Å Ca RMSD of the design model.
For the NTF2 fold designs, we used a less strict
criterion requiring a number of low-energy
models to be close to the design model; this cri-
terion enabled us to account for the more dif-
ficult problem of sampling native-like structures
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Fig. 1. LUCS sampling strategy to create de
novo designed protein fold families with
tunable geometries. (A) In nature, protein fold
topologies (left) are diversified to create families of
proteins with distinct geometries (right) optimized
for function; a helices are shown as cylinders and
b strands as arrows. The box shows schematic
representations of common types of geometric
variation. (B) The LUCS computational design
protocol seeks to mimic the ability of evolution to
diversify protein geometries to generate de novo
designed fold families. (C) Schematic of the LUCS
protocol for sampling LHL geometries. The
reshaped LHL units are colored in red and blue.
Typical numbers of models generated at major
stages of the protocol are indicated. (D) Designed
fold families. Schematic shows fold topologies
and design problems: Rossmann fold with one or
two reshaped LHL units (RO1 and RO2) and
NTF2 fold with two reshaped LHL units (NT). Also
shown are numbers for geometries generated by
LUCS, designed models that passed quality filters,
and experimentally characterized designs for
three design problems. The rightmost column
indicates the fraction of experimentally tested
designs that adopted folded structures.
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Fig. 2. Close agreement between models and experimentally determined
structures of designed proteins. Experimentally determined structures are
shown in yellow and design models in gray, with the reshaped LHL elements
highlighted in red and blue. (A to C) Designs for the Rossmann fold topology.
Computational models and NMR structures are compared for designs RO2_1
(A), RO2_20 (B), and RO2_25 (C). Also shown are the backbone heavy-atom
RMSDs calculated using the lowest-energy structure from the NMR ensemble.
(D to F) Design for the NTF2 fold topology. (D) The binding pocket of a
phosphatidylethanolamine ligand. The 2Fobs – Fcalc electron density map
(cyan) for the ligand molecule is shown at 1.0s level. (E) Comparison between
computational model and x-ray crystal structure for design NT_9. The
phosphatidylethanolamine ligand is shown in space-filling representation
(carbon atoms in yellow, oxygen atoms in red, phosphorus atoms in orange,
and nitrogen atoms in blue). Also shown are the backbone heavy-atom
RMSDs calculated including or excluding the terminal helices, respectively.
(F) Alignment between the designed helices in the computational model and
the experimentally solved structure for design NT-9. The hydrophobic
residues at the packing interface are shown in stick representation. The
RMSD shown includes the helix backbone heavy atoms and side-chain heavy
atoms displayed as sticks.RMSD = 2.7 / 1.4 Å
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for proteins larger than 100 amino acids. For
each of the three design problems, 10, 25,
and 10 designs that passed these tests, respec-
tively, were chosen for experimental char-
acterization (Fig. 1D and data S1 and S2). The
designed proteins were recombinantly expressed
in Escherichia coli and purified using His-tag
affinity and size exclusion chromatography. We
found that 5/10, 8/25, and 4/10 designs were
monomeric and well folded for each of the
three design problems, respectively, as deter-

mined by far-ultraviolet circular dichroism
and one-dimensional 1H and two-dimensional
15N heteronuclear single quantum coherence
(HSQC) nuclear magnetic resonance (NMR)
spectroscopy (Fig. 1D, fig. S4, and table S3).
To assess whether the designed structures

adopted their intended geometries, we solved
structures for three designs (RO2-1, RO2-20,
and RO2-25) that sampled two LHL units in
the Rossmann fold topology by NMR spec-
troscopy, and one structure for the NTF2 fold

topology designs (NT-9) by x-ray crystallogra-
phy (20) (fig. S5 and tables S4 and S5). The
experimentally solved RO2 design structures
closely matched the computational models
(Fig. 2, A to C), with backbone heavy-atom
RMSDs between models and solved struc-
tures within 1.3 Å, core hydrophobic side
chains in good agreements with the designed
models (fig. S6), and five of the loops in
designed LHL units well converged (fig. S7).
In the crystallographic electron density map
obtained at 1.5 Å resolution for the NTF2 fold
design (NT-9), strong signal was clearly iden-
tifiable inside a surface pocket (Fig. 2D), which
was interpreted as a bound phospholipid [1,2-
diacyl-sn-glycero-3-phosphoethanolamine (20)].
The two N- and C-terminal helices (residues
1 to 20 and 113 to 128), which had not been
reshaped by LUCS, were pushed apart to ac-
commodate the ligand, leading to an overall
backbone heavy-atom RMSD between design
and model of 2.7 Å. However, when excluding
the N- and C-terminal helices and aligning the
remainder of the design, the backbone heavy-
atom RMSD between the model and the solved
structure was 1.4 Å (Fig. 2E). Moreover, the de-
signed side-chain packing interactions between
the reshaped helices were in excellent agree-
ment with the design (Fig. 2F). Taken together,
our structural analysis confirmed the designed
geometry in the reshaped regions for all four
designs. The presence of a ligand in the NT-9
design is consistent with the known ability
of the NTF2 fold to bind to diverse hydro-
phobic small molecules. Such a result implies
the possibility of introducing new functions
such as ligand binding by reshaping protein
geometries.
We next analyzed the magnitude of the

geometric differences between our designs.
We first compared the backbone heavy-atom
RMSDs between the reshaped helices of all
well-folded designs (Fig. 1D) after aligning the
non-reshaped regions using both the design
models and experimentally solved structures
(Fig. 3A and fig. S8). For the designs with one
LHL unit reshaped, 18 of 20 off-diagonal dif-
ferences were more than 3 Å (Fig. 3A, left).
For the designs with two LHL units reshaped,
55 of 68 off-diagonal differences were more
than 4 Å (Fig. 3A, center and right). This scale
of variation exceeds the backbone changes
generated by existing flexible backbone de-
sign methods (24, 25), which are typically
smaller than 2 Å RMSD. For each well-folded
design, we also identified the closest struc-
tures in the Protein Data Bank (PDB) using
TM-align (26). Of the designed LHL regions
in the 17 well-folded LUCS designs, 15 were
significantly different (RMSD > 3 Å for de-
signs with one LHL unit reshaped; RMSD > 4 Å
for designs with two LHL units reshaped) from
their closest match in the PDB (Fig. 3A and
fig. S9), indicating that the design protocol not

Pan et al., Science 369, 1132–1136 (2020) 28 August 2020 3 of 5

y 
pr

oj
ec

tio
n 

(Å
)

B

C D E
x projection (Å)

design design native design native

z < 7.5

z > 7.5

0
1
2
3
4
5
6
7
8

N
um

be
r

of
 b

in
s

RO1
RO2 helix 1

RO2 helix 2

NT helix 1

NT helix 2

0

50

100

150

200 native
geometries
designable
geometries

N
um

be
r

of
 b

in
s

RO helix 1

RO helix 2

NT helix 1

NT helix 2

N
um

be
r 

of
 fo

ld
ed

 d
es

ig
ns

0

1

2

3

4

5

6

7
novel bins 0 novel bin

1 novel bin
2 novel bins

RO1
RO1

NT

A

1 2 5 8 9

1

2

5

8

9

1_exp

20_exp

25_exp

5

6

9

10

15

1 20 25 5 6 9 10 15

5

4

3

2

1

0

6

9_exp

1

8

10

9 1 8 10E
xp

er
im

en
ta

l (
ex

p)
 o

r
P

re
di

ct
ed

 S
tr

uc
tu

re

R
M

S
D

 betw
een m

odels (Å
)

RO1 designs RO2 designs NT designs

Design model IDs Design model IDs
Design model IDs

z < 7.5

z > 7.5

z < 7.5

z > 7.5

z < 14

z > 14

z < 14

z > 14

known bins
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structures found by TM-align. (B) Projection of centers and directions of designed helices (arrows) onto
the underlying b sheets. For the RO2 (center) and NT (right) panels, distributions in designable models
(Fig. 1D) are shown on the left (helices colored red and blue), and in known naturally occurring structures
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only generates stable structures with consid-
erable conformational divergence, but also ge-
ometries not observed in known structures.
We further analyzed the distribution of sam-

pled geometries and their coverage of de-
signable backbone structure space, where a
structure is defined as designable if at least
one sequence folds into that structure. As a
computational approximation, we defined the
models that passed the quality filters after the
first iteration of sequence design (20) as de-
signable because they had good core packing,
hydrogen bond satisfaction, and local sequence
structure compatibility with the designed se-
quence. We projected the center and direc-
tions of the helices onto the underlying b
sheets (Fig. 3B). The sampled helices from
designable models at each position encom-
passed the distributions derived from native
protein structures in the PDB (Fig. 3B, right
panels). For the NTF2 fold, the distributions
sampled in the designs were slightly shifted
to the upper left when compared to the dis-
tributions in known structures (fig. S8). This
difference could be a result of the presence
of a C-terminal helix in our designs occupy-
ing the region shown at the right of the space
projection, whereas C-terminal helices were
often missing in the ensemble of known struc-
tures. Overall, because the number of known
protein structures for a given topology is lim-
ited, the structure space covered by the known
structures is much sparser than the space
covered by the sampled structures. We quan-
tified the size of structure space by dividing
the six-dimensional space of helix centers and
orientations into bins (20) (fig. S10). For the
geometries sampled in this work, the known
structures covered 12 to 26 bins, whereas
LUCS-generated structures covered 63 to 221
bins (Fig. 3C); the smaller number of geom-
etries in the NT designs (relative to the RO
designs) could be a consequence of the addi-
tional C-terminal helix present on our NT
designs restricting the accessible space of the
two sampled helices. The 17 well-folded designs
(Fig. 1D) sampled three to seven bins for each
helix, respectively, and the majority (18/22) of
these bins were not covered by known struc-
tures (Fig. 3D). All but one of the well-folded
designs had at least one helix in a novel bin.
Five well-folded designs had both helices in
novel bins (Fig. 3E). Taken together, these re-
sults show that LUCS generates highly diverse
geometries encompassing those found in na-
ture but also exceeding known structure space,
indicating that a large proportion of designable
protein structure space remains unexplored.
We next sought to understand in more de-

tail how the backbone geometries of the de-
signed proteins were defined by the precise
details of their noncovalent intramolecular
interactions. The three experimentally solved
Rossmann fold topology structures had dis-

tinct sequence patterns (Fig. 4A), resulting in
distinct packing arrangements (Fig. 4, B and
C) in their hydrophobic cores. The b sheets fa-
vored b-branched residues, as expected, where-
as the side-chain sizes varied across different
designs and resulted in differential hydro-
phobic packing. In particular, we observed pre-
viously described knob-socket–type packing
motifs (27) (Fig. 4C and fig. S11) where non-
polar side chains fit into pockets formed by
three residues on helices. These arrangements
result in matched geometries between the
side chains from sheets and helices that likely
contribute to specifying the three-dimensional
arrangement of the helices (20) (fig. S12).
We also applied tertiary motif analysis using
MASTER (28). For all well-folded designs, we
were able to match tertiary motifs to both

the designed loops and interacting secondary
structure elements (fig. S13). Moreover, we
identified side chains mediating helix-helix,
helix-sheet, and helix-loop interactions that
are similar in our designs and the correspond-
ing matched tertiary motifs (Fig. 4D). Despite
the close match between the local structures
in the design and the tertiary motifs, the source
proteins of the motifs had overall structures
very different from the designs (fig. S13). Be-
cause tertiary motif information was not used
directly in LHL backbone sampling or side-
chain design, we conclude that recurrent ter-
tiary motifs can be recapitulated solely by
our LUCS sampling protocol and the Rosetta
energy function (22).
Previous key achievements in de novo de-

sign (11–15, 21) focused on designing one or a

Pan et al., Science 369, 1132–1136 (2020) 28 August 2020 4 of 5

B

C

A

RO2_25RO2_20RO2_1

RO2_1

RO2_20

RO2_25

Ile39 Val55 Ile81 Leu29 Val82 Phe3

D

Ile39

Ala78

Ala74

Ala71

Lys65Ile68

Leu55

Val53

Ile81
Asp45

Fig. 4. Structural features encoding distinct protein geometries. (A) Sequence patterns of the
hydrophobic cores in three designed models for the Rossmann fold, aligned by corresponding secondary
structure elements (top). Hydrophobic residues are shown as letters in rainbow colors (A, Ala; F, Phe; I, Ile;
L, Leu; V, Val; W, Trp; Y, Tyr) ordered by position in the primary protein sequence and scaled by side-chain size.
Gray line segments indicate positions of surface-exposed polar residues. The residues in the boxes are the knob
residues shown in (C). (B) Atomic packing of hydrophobic cores in the three experimentally determined
structures for the Rossmann fold (Fig. 2). The hydrophobic side chains in the designed cores are shown as
spheres. (C) Knob-socket packing motifs found in the designs. Three residues on a helix (gray sticks and
surfaces) form a socket accommodating a knob residue, shown as colored spheres. (D) Examples of tertiary
motifs matching the designed LHL structures. Designed structures are shown in gray; matched motifs are
shown in magenta. Side chains of the best-matched tertiary motifs and design models are shown as sticks. Insets
indicate location of the tertiary motif in the structure in the same orientation as in (B).

RESEARCH | REPORT
on A

ugust 28, 2020
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


few structures for diverse non–helical bundle
topologies by deriving design rules for spe-
cific topologies to identify the most favorable
“idealized” geometries. This topology-centric
strategy typically finds deep energy minima
and thereby succeeds in overcoming errors in
energy functions to create highly stable de
novo folds. In contrast, natural and LUCS-
generated structure families adopt non-ideal
geometric features such as diverse helix posi-
tions, orientations, lengths, and conformations
of connector elements, and exploring these
non-ideal regions presents extra challenges
(29). Nonetheless, we show here that LUCS
achieves accurate atom-level control over di-
verse geometries, and our designs are not no-
tably less stable than their de novo designed
starting points (fig. S4). This success could at
least partially be explained by the ability of
LUCS to recover three-dimensional packing
arrangements that are recurrent in nature
(Fig. 4D and fig. S13), but without using this
information as input.
We envision many applications for LUCS to

precisely tune protein geometries for new
protein functions that require atom-level con-
trol. The generalizable strategy underlying
LUCS (Fig. 1C) does not require prior defini-
tion of structural variation based on design
rules identified in native structures (21, 30).
New protocols could exploit this ability to flex-
ibly tune protein geometries during design
simulations while simultaneously building new
functional sites for ligand binding or protein-
protein recognition. The systematic sampling

of protein geometries should also enable the
design of dynamic proteins (31) that can switch
between multiple distinct de novo designed
conformations. Methods such as LUCS bring
control over designable protein geometry space
for arbitrary functions within reach.
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